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ABSTRACT

Quantitative vorticity analyses in naturally deformed rocks are essential for studying the kinematics of
flow in shear zones and can be performed using a range of methods, which have been developed over the
last two decades. The purpose of this review is to act as a starting point for the reader who needs
a current overview of the existing methods and to indicate in what circumstances these methods can be
most suitably applied. The review begins by providing an overview of deformation theory, followed by
description of the most promising methods — in terms of assumptions, analytical procedures, and
possible sources of uncertainty. Finally, the methods are compared on the basis of their uncertainties and
strain memory, and discussed in terms of how they can be used to retrieve information about temporal
and spatial variation of flow vorticity in shear zones. This review confirms that, although the existing
methods are valuable, they are at an immature stage of development and suffer from limitations and
uncertainties leading to interpretational problems, which, at present, can be alleviated by applying as
many methods as possible to a given sample. Additional studies are recommended to advance the

development of existing and new methods.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Natural deformation is commonly concentrated into shear zones
that range from the centimetre to the kilometre scale in width.
Understanding the kinematics of flow in these zones is a prerequi-
site for elucidating critical aspects of the tectonic evolution of the
Earth’s crust, as well as for deciphering the kinematic significance
of fabrics in deformed rocks. The ideal model of simple shear
(Ramsay and Graham, 1970; Ramsay, 1980) has strongly influenced
the thinking of structural geologists about the formation of high-
strain zones and, for many years, it was a standard of reference for
interpreting geological structures. Semi-qualitative studies during
the decade of 80s inferred from crystallographic fabrics that the
deformation path within some naturally occurring shear zones was
not strictly progressive simple shear but included a pure shear
component, emphasizing that it is more appropriate to interpret
structures in terms of the degree of non-coaxiality rather than in
terms of either perfectly non-coaxial or coaxial flow (Law et al.,
1984, 1986; Platt and Behrmann, 1986). Such observations gener-
ated the necessity to find practical ways for determining the degree
of non-coaxiality, or in other words, for evaluating the relation
between the vortical and the stretching components of flow using
numerical quantities such as the kinematic vorticity number (e.g.
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Truesdell, 1953; Means et al., 1980). The challenge was, and
continues to be, the effective use of structural/fabric data to
quantify kinematic flow, commonly referred to as vorticity analyses.
Since the first vorticity analysis in naturally deformed mylonites by
Passchier (1987a), significant progress in developing practical
methods for vorticity analysis has been made by many geologists
(Passchier and Urai, 1988; Wallis, 1992; Simpson and De Paor, 1993;
Tikoff and Fossen, 1995; Grasemann et al., 1999; Holcombe and
Little, 2001; Jessup et al., 2007; Gomez-Rivas et al., 2007; Johnson
et al., 2009a; Xypolias, 2009), accompanied by numerous theoret-
ical works about the kinematics of rock flow (e.g. Ghosh and
Ramberg, 1976; Lister and Williams, 1983; Passchier, 1987b, 1997,
Weijermars, 1991; Fossen and Tikoff, 1993; Jiang, 1999; lacopini
et al.,, 2010).

Especially in the last ten years, different vorticity analysis
methods have been applied, either in isolation or in combination, to
study shear zones from various tectonic settings (Xypolias and
Doutsos, 2000; Bailey and Eyster, 2003; Law et al., 2004; Marques
et al., 2007; lacopini et al., 2008; Sullivan, 2008; Frassi et al.,
2009; Xypolias et al., 2010; Law, 2010; Thigpen et al., 2010a).
Such vorticity studies have confirmed that simple shear is the
exception rather than the rule in natural deformation and have
presented preliminary data about the temporal and/or the spatial
variation of the vorticity of flow in natural shear zones. The iden-
tification of a pure shear component of deformation in a shear zone
is critically important since during a persistent flow governed by
a simultaneous combination of pure and simple shear, it is possible
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to cause elongation of deforming material parallel to the walls of
the zone (Wallis et al., 1993). It has been also shown that even for
a relatively small pure shear component, this transport-parallel
elongation can be significant if strain magnitude is enough
(Xypolias and Kokkalas, 2006). Such observations, especially when
they are combined with data about the spatio-temporal variation of
flow vorticity, may shed light on the tectonic setting of the shear
zone in question (e.g. Wallis et al., 1993; Northrup, 1996; Grujic
et al.,, 1996; Grasemann et al., 1999; Law et al., 2004).

From the above, it becomes apparent that vorticity analysis is
arelatively new and valuable tool for solving problems in structural
geology and tectonics. However, due to the complexity of natural
deformation, we have a fragile sense of confidence about numbers
extracted from rocks using methods of vorticity analysis, which are
still in a relatively immature stage of development. Therefore, apart
from the analytical procedure, one must be aware of possible
sources of error linked to the application of vorticity methods. In
many application studies, however, the error is rarely discussed in
detail. The purpose of this review is to present a state-of-the-art
summary of current knowledge about vorticity analysis methods in
terms of theoretical background, analytical procedure, limitations
and possible sources of errors and uncertainties. Due to a limited
database, a comprehensive comparison of existing methods is
currently impossible but an attempt is made to discuss the
consistency or discrepancies between various methods in the
context of uncertainties and the length of strain memory associated
with the different methods. This review begins with an overview of
the basics of deformation theory.

2. Overview of theory

At any instant of time, the velocity field around a point in
a deforming continuum can be described, with respect to a Carte-
sian coordinate system, by the flow or velocity gradient tensor, L,
(Lj = dv;fox;; i,j = 1, 2, 3) and the related velocity gradient equation:

Vi = Linj (1)

where v; is the velocity at spatial coordinate x; (Malvern, 1969;
Ramberg, 1975). If L is space-independent and remains unvarying
throughout the deforming volume of material, the flow is consid-
ered to be homogeneous, otherwise the flow is heterogeneous. Also,
the flow is considered to be steady if L is time-independent,
otherwise it is non-steady. The vast majority of analytical works in
the geological literature are limited to homogeneous and steady-
state flows mainly because their mathematical description is
simple. Notice, for example, that homogeneous flows have linear
velocity gradients and can be described in a straightforward
manner while heterogeneous flows have non-linear velocity
gradients, which require application of numerical integration
methods of governing equations for their description. However, it is
widely accepted that deformation in nature is generally heteroge-
neous and non-steady. The problem of heterogeneity can be partly
overcome by subdividing the deforming continuum into smaller
domains where the flow can be approximately viewed as homo-
geneous. The assumption of steadiness of flow, however, remains
a fundamental problem since little is known about flow paths in
progressive deformation. Thus, for the present state of knowledge,
homogeneous steady-state flows represent a valuable standard of
reference for investigating more complex natural systems.

2.1. Decomposition of the flow tensor

The flow tensor can be decomposed into the symmetric tensor D
and the anti-symmetric tensor W, which are related to the

stretching and the vortical (or rotational) components of velocity
field, respectively (Malvern, 1969; Ramberg, 1975; McKenzie, 1979;
Lister and Williams, 1983):

L=D+W 2)

Note that the flow tensor does not contain the translating
component of the velocity field. This component vanishes by fixing
the coordinate system to the particle in question.

The symmetric quantity D is the stretching tensor and its three
orthogonal eigenvectors are known as the Instantaneous Stretching
Axes, ISA; (i = 1, 2, 3), of flow. The eigenvalues of D describe the
stretching rates, s; (i = a, b, ¢), of material lines instantaneously
parallel to these axes and can have any magnitude. For planar
deformation zones in isotropic material, the ISAs are thought to be
parallel to the stress axes (Weijermars, 1991).

The anti- (or skew-) symmetric part W is the vorticity tensor
and describes, with respect to a coordinate system, the angular
velocities (w) of local elements (lines or particles) of a deforming
body without their stretch. Since the vorticity tensor is skew-
symmetric, it can be simply expressed by a vector called the
vorticity vector (w), the magnitude (or length) of which defines
the vorticity, w, of flow. Strictly mathematically, the vorticity
vector is the curl of velocity (w = curlv;), which is also equal to
twice the angular velocity vector (w = 2w) (e.g. Malvern, 1969,
p.147; Means et al., 1980). The plane lying normal to these vectors
is known as Vorticity Profile Plane (VPP; Robin and Cruden, 1994)
or Vorticity Normal Section (Jiang and Williams, 1998) (Fig. 1a).
Different interpretations of the physical meaning of vorticity have
been made by various authors (Means et al., 1980; Ghosh, 1987;
Means, 1994; Tikoff and Fossen, 1995) and generally it can be
thought of as (Fig. 1a): (1) equal to the sum of the angular
velocities of any pair of instantaneously orthogonal material lines
in the VPP; (2) twice the average angular velocity of all material
lines lying in the VPP and passing through a particle in question;
or (3) twice the rate of rotation of a rigid spherical particle in
a ductilely deformed matrix. Moreover, flows with vorticity are
said to be rotational, otherwise the flows are said to be
irrotational.

The orientation of the vorticity vector with respect to the three
orthogonal ISAs controls the symmetry of flow but, theoretically, no
unique angular relationship exists between these directions. In
simple flow types, the vorticity vector remains parallel to one of the
ISAs. Such flow types have a monoclinic or higher symmetry, and
are referred to as monoclinic flows (Fig. 1a) (Passchier, 1998). If the
vorticity vector is oblique to all ISAs, the flow is said to be triclinic
(Fig. 1b) (Robin and Cruden, 1994). Flows with monoclinic
symmetry are admittedly an end-member case, but several exam-
ples show that such flows are not uncommon in natural shear
zones. In most examples, the relation s, > s; and sp > S exists
between the instantaneous stretching rates, while the vorticity
vector lies parallel to ISAsz (Fig. 1a).

2.2. Vorticity decomposition

The magnitude and orientation of w can vary according to the
framework chosen as a reference frame. It has been recognized
and extensively discussed by several authors (Means et al., 1980;
Lister and Williams, 1983; Jiang, 1999) that the vorticity can be
decomposed, with respect to an external (often geographical)
reference frame, into: (1) an “internal” or shear-induced vorticity
(wj), which represents the rotation of material lines with respect
to the ISAs; and (2) a vortical component, known as spin (or
external spin), which results in rotation of ISAs (and all lines)
through the external reference frame. The concept of vorticity
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Fig. 1. (a) Orientation of vorticity vector, w, with respect to the ISA; 23 (Instantaneous
Stretching Axes) for a monoclinic flow, and its relation to the instantaneous angular
velocities (red arrows) of material lines as well as to a rotating spherical particle. The
sense of stretching rate (blue arrows) of material lines with respect to ISA is also
shown; s, — principals stretching rates. (b) In triclinic flow types the vorticity vector
is oblique to all ISAs. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

decomposition can be visualised by considering a planar shear
zone that is subjected to homogeneous steady-state deformation
and coevally rotates in a randomly chosen external references
frame (Fig. 2). The geometry of rock fabrics in the shear zone is
influenced by the internal vorticity and reflects the flow type,
which can be non-coaxial if the material lines continuously
diverge from the orientation of the ISAs or coaxial if lines parallel
to the ISAs do not rotate relative to these axes. Thus, vorticity
measured with respect to a material marker (i.e. shear zone
boundary; Fig. 2) that serves as an internal reference system, is
the internal vorticity and is caused by the non-coaxial component
of deformation. The rotation, in turn, of both the ISAs and the
shear zone as a whole is the product of spin, which is equivalent
to the rotation of a rigid-body about an axis. The spin component
has no effect on the geometry of fabrics, and therefore cannot
remove the non-coaxiality (e.g. Means, 1994). Moreover, it is hard
or even impossible to determine the amount of rotation of a shear
zone. Hence, it is more convenient and useful for describing
vorticity to attach the reference frame to a material marker
(Weijermars, 1991; Simpson and De Paor, 1993; Tikoff and Fossen,
1995) or alternatively to use a reference frame that remains at
fixed angle or parallel to the ISAs (Passchier, 1987b, 1997, 1998;
lacopini et al.,, 2007). The latter reference frame simplifies the
flow description because the spin component vanishes.

External
reference frame
=

ha

Fig. 2. Illustration of the vortical component, known as spin, which results in rotation
of both the ISAs (red arrows) and the shear zone through an external reference frame.
Dash lines —orientation of ISA and shear zone before rotation; solid lines — after
rotation. Vorticity measured with respect to an internal reference frame is the internal
vorticity. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Internal
reference frame

2.3. Dimensionless vorticity measures

The kinematic vorticity number, Wy, was defined by Truesdell
(1953) and introduced into the geological literature by Means
et al. (1980) as a measure of the degree of instantaneous non-
coaxiality of flow. This non-dimensional number normalizes the
internal vorticity, w;, to the magnitude of principals instantaneous
stretching rates, s;, as follow:

Wy = w; [2<s§ +s? +s§)]_]/2 (3)

The Wi has values equal or greater than 0, and flow with Wy = 0 is
said to be coaxial. Thus, the degree of non-coaxiality increases with
increasing Wy values.

For three-dimensional flows with monoclinic symmetry, less
complex vorticity numbers than in Eq. (3) can be designated
because the flow can be effectively described on the VPP (e.g.
Passchier, 1988a,b; Weijermars, 1991; Tikoff and Fossen, 1993;
Robin and Cruden, 1994). Thus, if the vorticity vector is parallel to
ISA3 (Fig. 1a) then a sectional kinematic vorticity number, Wy, can be
defined as follow (Passchier, 1997):

Wh = w/2sm (4)

where w is the magnitude of vorticity vector and sy, is the mean
stretching rate (=(sp — $3)/2). For formalizing monoclinic flows,
Passchier (1997, 1998) defined also the sectional kinematic dilatancy
number, An(=(Sa + Sb)/25m), which describes the instantaneous area
change in the VPP, as well as the sectional kinematic extrusion
number, Tp(=Sc/2sm), which represents the elongation rate parallel
to the vorticity vector. Remember that these sectional dimension-
less numbers were designated by fixing the ISAs to the external
reference frame. Therefore, strictly speaking, the W, is a measure of
the degree of rotationality of flow. For non-spinning flows, the Wy is
related to W,, by the equation:

Wi = Wiy /2T2 + A2 +1 (5)

Thus, for plane strain (T, = 0) equal-area (A, = 0) deformation,
Wy = Wk
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Another measure of instantaneous non-coaxiality for plane
strain equal-area flows is the quantity S;, which is defined as the
ratio of the instantaneous pure shear strain rate (parallel to the
direction of shearing) to the simple shear strain rate (S; = &/v;
Ghosh and Ramberg, 1976), and is related to Wy (=W,) by the
equation (Ghosh, 1987):

S =4/ (1-WZ) /2w (6)
For plane strain deformation, Wy can also be expressed in the
form (Tikoff and Fossen, 1993; Fossen and Tikoff, 1993):

W, = cos [tan”(zlnk/y)] (7)
where v is the shear strain and k the elongation parallel to shear
direction.

2.4. Particle movement paths

One of the most powerful properties of the kinematic numbers
is their ability to characterize the geometry of particle paths for
individual flow types. Particle paths (or streamlines) are open-
ended or closed curves which represent the progressive change in
position of particles during deformation. The most well known
particle paths are those studied by Ramberg (1975) for the special
regimes of two-dimensional (2D), steady-state and non-dilatant
(equal-area, Ay = 0) flows such as (Fig. 3): pure shear (W, = 0);
general shear or sub-simple shear (De Paor, 1983) (0 < W < 1);
simple shear (W, = 1); super-simple shear (De Paor, 1983)
(1 < Wy < =) and rigid-body or pure rotation (W, = ).
Passchier (1991, 1997) described a variety of 2D dilatant flows
(Ap # 0) for varying Wy, values; some of which are illustrated in

rigid-body
rotation

2075

Fig. 3. As a whole, the streamline patterns of both dilatant and
non-dilatant 2D flow types can be categorized into: hyperbolic
types; parallel types; elliptical or circular closed loops; and
inward or outward radiant directed flow types (Fig. 3) (e.g.
Passchier, 1997). Hyperbolic and elliptical streamline patterns are
also considered to represent non-pulsating and pulsating defor-
mation histories, respectively (Ramberg, 1975; McKenzie, 1979;
Weijermars, 1991).

A remarkable feature of hyperbolic flow patterns (e.g. pure and
general shear) is a set of two straight streamlines. These straight
lines are asymptotes to the hyperbolas and define material lines
that do not rotate with respect to the ISAs during progressive
deformation. Axes in space that are parallel to such irrotational
lines correspond to the eigenvectors of tensor L and for non-spin-
ning flows they are known as flow apophyses (A;; Fig. 3) (Ramberg,
1975; Passchier, 1986). Non-hyperbolic dilatant flow types with
Wh < 1 also contain two separate or joined apophyses (Fig. 3),
except for some cases with extremely large (positive or negative) A,
values. Moreover, pulsating flows do not have apophyses, but their
streamline patterns are governed by imaginary lines, which can be
considered as “ghostvectors” (Fig. 3) (Iacopini et al., 2007, 2010).

The apophyses control the flow geometry and for hyperbolic
flow types, they can be recognized as extensional (A;) or shortening
(A1) depending on whether they “attract” or “repulse” the material
lines (or points) in a flow, respectively. For that reason, in geological
applications the extensional apophysis, Ay, is assumed to be parallel
to the boundaries of elongating shear zones (Fig. 4a) while the
shortening apophysis, Ay, is parallel to the boundaries of contract-
ing shear zones (Fig. 4b). In such cases, the apophysis defining the
flow/shear plane is referred to as stable whilst the other is unstable
or inclined. Also, apophysis A, is often referred to as the fabric
attractor of flow (Passchier, 1997).

CO= ————e - -
T % 1 ISA,
1 1
i v 1
! !
W, [l 1
super-simple | outward
radiant shear radiant ISA,
2 © <@
% simple shear %
1.0- — |
5 — Flow apophyses
(eigenvectors of L)
general shear a>< he A,
g T A, :
05— > < _____ "ghostvector"
1/’—-—4—-—_:\ -
Streamline
. \\‘\“ \ pure sllear z / //-/" ] l
v
e R — W — %
N F, ey
1 1 1 1 1 1 1
-co 1.0 -0.5 0.0 0.5 1.0 oo
<«——— area decrease A area increase —————»

n

Fig. 3. W,—A, plane illustrating streamline patterns for representative two-dimensional steady-state flows (after Ramberg, 1975; Passchier, 1997). The orientation of instantaneous
stretching axes, ISA (top right), for all flow types is the same. A general categorization of flow types according to shape of streamline patterns is also shown (after Passchier, 1997).
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ISA,

X
1 A, Elongating
shear zone

Contracting
shear zone

W, =0.71

Fig. 4. Simplified sketch showing orientation of the instantaneous flow elements and
their angular relationships in a dextral elongating (a) and a dextral contracting (b)
general shear zone with W, = 0.71. A; and A, — flow apophyses; ISA; and ISA; —
instantaneous stretching axes; X and Z — principal strain axes. The vorticity vector lies
perpendicular to the page.

The angle, «, between the flow apophyses (Figs. 3 and 4) always
ranges between 0° and 90° and depends only on W, as follows
(Bobyarchick, 1986; Passchier, 1986):

Wh = cosa. (8)

Thus, the flow apophyses are orthogonal for pure shear flow;
form acute angles for general shear flow while for the special case
of simple shear they coincide (Fig. 3). Moreover, Eq. (8) reveals that
W is a non-linear measure of flow vorticity (e.g. Tikoff and Fossen,
1995). The intermediate case between pure and simple shearing
occurs at W, = 0.71 (a« = 45°) and not at Wy, = 0.5 (a = 60°) (Law
et al., 2004). Furthermore, the extensional ISA; and the short-
ening ISA; form an angle £ and &/, respectively, with the extensional
apophysis A; (Fig. 4a and b). Thus,

Wy = sin2f = sin2¢’ (9)

(Weijermars, 1991). Egs. (8) and (9) are extensively used in many
vorticity analysis methods but both are strictly valid only for 2D
flows (e.g. Tikoff and Fossen, 1995).

2.5. Representation of flow tensor in Mohr circle
The graphical representation of 2D homogeneous flows on Mohr

circle diagrams was first introduced into the geological literature by
Lister and Williams (1983; following ].P. Platt) and its usefulness

has been demonstrated in numerous studies (Means, 1983;
Passchier, 1987b, 1991; Bobyarchick, 1986; Grasemann et al,,
2006; Coelho and Passchier, 2008). Here, the general properties
of Mohr circle for flow tensor are presented. Some examples of
equal-area flow types in real space and their corresponding
representation in Mohr space are illustrated in Fig. 5a.

For a given flow type, the Cartesian coordinates of each point
on Mohr circle represent the instantaneous angular velocity ()
and the stretching rate (s) of a particular material line that lies in
the VPP. Therefore, each circle contains infinite pairs of w—s values
which correspond to lines of all possible orientations through
a given point. For equal-area flows, the centre of the circle lies on
the w-axis and its vertical distance from the s-axis is equal to half
of vorticity. As a result, the Mohr circle for pure shear is centred
on the origin of the axes (Fig. 5a). Circle radius is equal to the
mean stretching rate (sp) and thus pure rotational flows are
plotted as points on the w-axis (Fig. 5a). Furthermore, eigenvectors
of both tensors D and L can be represented on the Mohr circle.
Specifically, lines instantaneously parallel to ISAs, plot as anti-
diametrical points on the circle and at equal distances from the
abscissa axis (Fig. 5a). For pure shear and general shear, the flow
apophyses (A1, Ay) are represented by the intersections of Mohr
circle with the s-axis (Fig. 5a). Note that the angle, «, between the
two apophyses on the circle is twice the angle in real space. For
simple shear, the joined apophyses plot at the unique point where
the circle transects the abscissa. Also, the Mohr circle intersects
the w-axis at Q1 and &,, which represent the directions of
maximum and minimum angular velocities of material lines
(Fig. 5a). In real space, these directions bisect the angle between
Ap and A; as well as the right angles defined by ISA; and ISA;. For
equal-area flows, these directions also coincide with the axes of
zero stretching rates L; and L, (Fig. 5a).

Steady-state flows with area change can also be presented on
Mohr circle, but in this case the circle’s centre shifts parallel to the
s-axis either leftward or rightward depending on if the area
decreases (Ap < 0) or increases (A, > 0), respectively, during
progressive deformation (Fig. 5b). The cosine of the angle between
L1 and Ly, in real space, gives the A (Fig. 5¢) (Passchier, 1991):

An = cos (L{Lz) (10)

The horizontal distance of the Mohr circle centre from the w-axis
defines the rate of area change (=s; + Sp).

2.6. Finite deformation

For a steady-state flow, the orientations of ISAs and flow
apophyses with respect to a reference frame remain constant
throughout deformation history. In response to this deformation,
the material lines stretch and rotate tending to approach the
extensional apophysis. Thus, the shape and orientation of any
material line in the finite state of deformation are controlled by Wy,
the finite strain as well as the bulk volume change. The position
gradient tensor (or deformation gradient tensor), F, (Means, 1983;
Bobyarchick, 1986; Passchier, 1988a; Tikoff and Fossen, 1993,
1995) contains information for all these parameters and can
effectively describe finite deformation. In fact, the tensor F relates
the position of material particles in the undeformed state to their
position in the deformed state and is derived from the flow tensor L
by the relation:

F = exp(Lt) (11)

(see Passchier, 1988a for a full mathematical description).
Representation of F in Mohr circle space (Means, 1982; De Paor
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Real space Q

Mohr circle for L
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w
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shear shear rotation
w W,=cos a

area decrease area increase

A, =cos (L L,)

Fig. 5. (a) Instantaneous elements of steady-state equal-area flows in real space and their representation by Mohr-circles for the velocity gradient tensor, L. A; and A, — flow
apophyses; ISA; and ISA; — instantaneous stretching axes; L, and L, — axes of zero stretching rates; Q1 and Q, — directions of maximum and minimum angular velocities of material
lines, respectively. Each point on the Mohr circle represents the instantaneous angular velocity, w, and the stretching rate, s, of a particular material line. w — vorticity; s, — mean
stretching rate. (b) The position of Mohr circle (for L), with respect to the w-axis for flows with area change. (c) The elements of a dilatant (area increase) flow in real space and their

representation by Mohr-circles for L.

and Means, 1984; Passchier, 1988a, 1990a) is a powerful tool to
describe finite deformation in planes parallel to VPP and has
been used in many studies to establish methods of vorticity
analysis (e.g. Passchier and Urai, 1988; Vissers, 1989; Passchier,
1990b; Wallis, 1992, 1995; Xypolias, 2009). Below, the proper-
ties and the construction method of Mohr circle analysis for F are
given. Before that, it should be noted that a similar method is
used to construct the Mohr circle for the reverse tensor of F,
referenced as H (e.g. Passchier, 1990b). The latter tensor relates
the particles position in the deformed state to the undeformed
state. Moreover, for the sake of simplicity the following discus-
sion is restricted to deformation paths produced by steady-state
flows. However, the hypothesis of steadiness of deformation
seems to be unrealistic in many natural shear zones. For that
reason, and due to the instantaneous nature of Wy, calculations
of rotational components of finite deformation can be more
appropriately performed using the mean kinematic vorticity
number, Wr,, which represents a temporal average quantity of
Wh. If flow in the deformation increment(s) of interest has been
steady-state, then W, = Wp,.

The Mohr circle for tensor F (2 x 2) is plotted as an off-axis
circle in stretch space. The polar coordinates of any point on the
circle represent the rotation and stretch of material lines in real
space (Fig. 6a) (Means, 1982; Passchier, 1988a). The angle between
two points on the F-Mohr circle is twice the original angle
between the corresponding lines in real space (e.g. @ and p in

Fig. 6a). The angle between two lines in the deformed state cannot
be read from the Mohr circle, but can be calculated from the
original angle between the lines and the amount of rotation for
each line (e.g. p’ in Fig. 6a). Intersection points of the circle with
the horizontal axis represent material lines of zero finite rotation.
These lines coincide with the flow apophyses at any instant during
steady deformation histories. The finite strain axes plot at oppo-
site ends of the diameter, which extends through the axes origin
(Fig. 6a and b).

Generally, the values of three parameters are required to
construct the Mohr circle for that final state of deformation:
the radius R of the circle; the distance T of the circle centre from the
axes origin; and the vertical distance, Q, of circle centre from the
horizontal axis (Fig. 6b). For equal-area deformation, the parame-
ters R and T are functions of strain ratio in the XZ plane of finite
strain, Rxz, only but they can modified to incorporate the finite area
change, AA (Fig. 6b). The parameter Q depends on R and Wy, as
follows:

Wm = Q/R (12)

Thus, Q = 0 for pure shear and Q = 1 for simple shear.

Progressive steady-state deformation with 0 < W, < 1 can be
represented in Mohr space by a series of circles with increasing
diameter, the centre of which translate along the abscissa axis for
progressive pure shear or into the space for both progressive
general and simple shear (Fig. 6¢) (Passchier, 1988b).
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3. General limitations and assumptions of vorticity analysis

The above theoretical description is selectively focused on 2D
flows where the vorticity vector and one of the ISAs are parallel to
each other and both are perpendicular to the plane in question, the
VPP. This focus is because the methods applied for estimating Wy, (or
W) utilize data collected on the XZ plane of the finite strain (parallel
to lineation and normal to foliation), assuming monoclinic flow with
the vorticity vector approximately parallel to the Y-axis of the strain
ellipsoid. This assumption is reasonable for shear zones where
vorticity gauges such as crystallographic fabrics, C- and C’-shear
bands exhibit monoclinic (or orthorhombic) geometry with their
symmetry axis being within the foliation and normal to lineation.
However, a number of works (Lin et al., 1998; Jones and Holdsworth,
1998; Jiang and Williams, 1998; lacopini et al., 2007; Forte and
Bailey, 2007; Fernandez and Diaz-Azpiroz, 2009) have inferred
that shear zones can also be developed by flows with triclinic
symmetry. Also, some studies (e.g. Jiang and Williams, 1998; Jiang
et al., 2001) consider the monoclinic flow to be the exception
rather than the norm in high-strain zones and have shown that
triclinic flows with large simple shear components can theoretically
produce structures with apparent monoclinic geometry. In such
cases, the VPP is not necessary perpendicular to the symmetry axis
of fabrics and such vorticity estimates from such fabrics are not
accurate. In fact, no strict criteria exists to distinguish monoclinic
from triclinic shear zones (Jiang and Williams, 1998; Passchier and
Coelho, 2006). However, if both the lineation and the pole to folia-
tion lie in a plane, which is oriented parallel to outcrops containing
the best developed asymmetric structures (e.g. Czeck and
Hudleston, 2003), then this plane is often assumed to be the VPP
of a common monoclinic shear zone. For monoclinic elongating
shear zone, the intersection between the main foliation and the
zone boundary is also normal to VPP (Jiang and Williams, 1998).

Another limitation of 2D vorticity analysis is the assumption of
plane strain deformation. For non-plane-strain deformation, no
simple relationships exists between ISAs and flow apophyses and
thus relations like Eqs (8) and (9) used by various methods for
estimating Wy, are not valid. However, Tikoff and Fossen (1995)
investigated the effect of the third stretching direction (Y-axis) on
vorticity estimates and demonstrated that the 2D analysis over-
estimate the 3D vorticity number by only a small amount. Specif-
ically, the overestimation is expected to be around 0.05 for
a vorticity number close to 0.6 and reduces to zero with increasing
pure or simple shear component.

Deformation in lithological heterogeneous shear zones can lead
to partitioning of flow between layers with differing competence.
In such cases, vorticity number can vary from layer to layer even
though the bulk geometry of flow remains constant during
progressive deformation. For example, Lister and Williams (1983)
suggested that competent layers tend to deform more coaxially
than incompetent layers, although numerical models (Ishii, 1992;
Jiang, 1994) have shown that this suggestion only holds for
extremely competent domains (zero competence factor; see Jiang
(1994) for details). Possibly, this problem can be addressed by
performing vorticity analyses on samples collected from thick
lithologically homogeneous horizons. The latter tend to deform in
a manner similar to the whole system (Ishii, 1992). Moreover, for
a thickness ratio (competent/less competent layers) ranging from
1/3 to 3 no noticeable effects on vorticity number are expected
(Ishii, 1992).

4. Methods of vorticity analysis
This section provides an overview of the most commonly used

methods for estimating Wy, or W;,. Some methods rely on the same
structural criterion and for that reason the section is organized in
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terms of vorticity gauges. All methods are 2D so all descriptions
refer to the plane of observation that is parallel to the XZ plane of
the finite strain. Moreover, the description is restricted to elon-
gating shear zones assuming that the extensional apophysis A; is
parallel to the shear plane. Similar methodological approaches
could be also used to analyse vorticity in contracting shear zones.
Also, the application of some vorticity methods requires indepen-
dent estimates of strain ratio Rxz. Reviews of available techniques of
strain analysis are given by Ramsay and Huber (1983) and Lisle
(1994).

4.1. Deformed sets of veins or dykes

The stretch behaviour of a particular material line in a homo-
geneous deformed body is governed by the initial orientation of the
line, the finite strain, volume change and Wy, and can be charac-
terized by continuous extension (e), continuous shortening (s) or
shortening followed by extension (se) and vice versa (es) (Talbot,
1970; Hutton, 1982; Ramsay and Huber, 1983; Passchier, 1986). In

naturally occurring shear zones information about the stretch
history of individual material lines can be retrieved by the defor-
mation pattern of competent veins or dykes (i.e. boudinaged folds;
Fig. 7a) of various orientations, provided that they are embedded in
the host rock mainly before the onset of deformation. Utilizing the
observation that sets of material lines with similar stretch histories
occupy distinct geometric sectors in circular orientation diagrams,
Passchier (1990b) proposed a method for estimating all finite
deformation parameters including Wy, which is summarized
below. Examples of the application of these method to naturally
deformed rocks have been given by Passchier (1986), Passchier and
Urai (1988), Wallis (1992), Kumerics et al. (2005) and Short and
Johnson (2006).

Commonly, three types of material line sectors with different
stretch histories can be distinguished on an orientation diagram:
(s), (e), and (se) sectors. For steady-state flows, the distribution and
the boundaries of these sectors are controlled by the orientation of
material lines that lie parallel to the axes of zero stretching rates (L1,
Ly; Figs. 5 and 7a) at the onset of deformation and at the final
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Fig. 7. (a) Diagrams illustrating the effects of Wp,, A, and Rxz on the distribution and the size of sectors of material lines (i.e. deformed veins or dykes) with different stretch histories
in real space during progressive deformation. The diagrams are valid for constant flow parameters (e.g. Wi, = W;,). In incremental strain (Rxz = 1), the axes of zero stretching rate (L,
and L,) define the boundaries between (s) and (e) sectors. At the finite deformation state (Rxz = 5, 10), the lines that bound the material line sectors correspond to L-axes of flow at
the onset (L, and Ly;) and at the end (L, and La,) of deformation. (b) Schematic illustration of the analytical procedure employed to estimate Wy, from a set of deformed veins (or
dykes) in a cross-sectional outcrop face (i); after Passchier (1990b). (ii) The orientations of individual deformed veins are plotted on a diagram to determine the boundaries between
veins with different stretch histories; (iii) the boundaries between (s), (e) and (se) sectors are then established taking into account the competence contrast between veins and
matrix; (iv) the sectors are plotted in a Mohr circle (of arbitrary size) for tensor H and then tie lines are drawn to find the axes origin (v). The Wy, is equal to the ratio Q/R.
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increment of deformation. The notation Ly; and Ly; (i = 1,2) is used
for these four lines where the subscripts ‘b’ and ‘a’ refer to ‘before’
and ‘after’ deformation (Passchier, 1990b). During progressive
deformation with Wy, < 1, both Ly, lines as well as all material lines
with intermediate orientations between these lines will extend as
they rotate toward the apophysis A,. All other rotated material
lines, in turn, can be either shortened-then-extended or only
shortened depending on if they did or did not pass, respectively,
through the directions of L; axes. Therefore, the Ly; lines always
define the boundaries of the (e) sector, while the L,; lines define the
boundaries of the (s) sector (Fig. 7a). The arcuate sectors Ly; ™ Lpq
and Ly * Lyy contain material lines that have first been shortened-
then-extended (se) and are interposed between the (s) and (e)
sectors. During progressive simple shear, Ly; progressively rotates
while the Ly, is fixed to shear plane and remains parallel to Ly;.
Hence, the (e) and (s) sectors are separated by one (se) sector
(Fig. 7a). Summarizing, for steady deformation with Wy, (=W,) < 1,
the material lines sectors should be distributed on an orientation
diagram as follows (Fig. 7a) (Passchier, 1990a,b):

Lp1 — (e) — L2 — (se) — Laz — (s) — La1 — (se) — L,
while for Wy, = 1 this distribution is modified to (Fig. 7a):

Lp1 — (&) — Lb2ja2 — (s) — La1 — (se) — Lpy,

These sectors distributions are valid for both non-dilatant and
dilatant flows, and imply that the size of the (se) sector between Ly
and Ly generally diminishes with increasing Wy, values (Fig. 7a).
Theoretically, an (es) sector can also be developed between Ly; and
Ly lines for Wi, > 1 (Passchier, 1990b; Kuiper and Jiang, 2010),
although in nature such stretch behaviour of material lines (i.e.
folded boudins) is commonly the result of polyphase rather than
a single phase of deformation (e.g. Passchier and Trouw, 2005).

The size of material line sectors depends not only on Wy, but
also on finite strain and Ay, (Fig. 7a). For example, as is indicated by
Eq. (10), the angle between L, * Ly is a function of An. An easy way
to obtain Wy, values is by using the Mohr circle for the tensor F or its
reverse H, although the analysis is commonly performed for H
following the procedure summarized below (see Passchier, 1990b;
Kuiper and Jiang, 2010 for details). In a Mohr diagram for H (Fig. 7b),
the L, lines are represented by the intersection points of the circle
with a vertical axis. This axis passes through the circle centre if
Ap = 0 and lies to the left or to the right of the centre if A, value is
negative or positive, respectively. Using these properties, all stretch
sectors and L-lines of an orientation diagram, which represents the
distribution of deformed veins on an outcrop surface (Fig. 7b:i—iii),
can be plotted in a Mohr circle of arbitrary size, in such a way that
the Ly1—L,y axis is vertical (Fig. 7b: iv). As schematically illustrated
in Fig. 7b: (v), tie lines are then drawn to find the origin of Mohr
space. Thus, an estimation of Wy, is obtained by measuring the ratio
QJR directly from the circle (Eq. (12); Fig. 7b: v). The scale of the
Mohr diagram is also determined to calculate strain ratio
(Passchier, 1990b).

The method represents a very good exercise for understanding
the stretch history of material lines in a homogeneous deformed
material. Moreover, the advantage of this method is that it relies on
the orientations of lines, which in most cases can be fairly accu-
rately measured. However, its application to naturally deformed
rocks has some problems. The methods only work if the deforma-
tion has accumulated by approximately steady-state and homo-
geneous flow, on the scale of the analysed surface area (Passchier,
1990a,b). Also, the boundaries of sectors of folded, boudinaged
and folded-then-boundinaged veins and dykes may not coincide
and Huber, 1983; Passchier, 1990b). For example, if a high compe-
tence contrast occurs between vein material and matrix, veins may

completely unfold when passing from the (s) to (e) field and
consequently the folded-then-boundinaged sector will be nar-
rower than the actual (se) sector. In the case of a low competence
contrast veins absorb a certain amount of longitudinal shortening
or extension after they pass an L-axis and before they begin to
buckle or boudinage (Passchier, 1990b). Possibly, a correction for
the orientation of L, and L, lines between material line sectors can
be made if the competency contrast is known. Moreover, especially
in general flows with area decrease, some (e) and (se) material line
sectors become very narrow at relatively low strain values (Fig. 7a).
It is doubtful if the boundaries between such sectors can be spec-
ified in practice.

4.2. Rigid porphyroclasts

Several studies (Ghosh and Ramberg, 1976; Passchier, 1987a;
Simpson and De Paor, 1993; Masuda et al., 1995; Marques and
Coelho, 2003) argued that the rotation of rigid porphyroclasts
embedded in a ductilely deforming matrix depends on the vorticity
of flow among others factors. The theoretical basis of these studies
is Jeffrey’s (1922) model that assumes: (a) particles are rigid ellip-
soids; (b) particles are perfect bonded to the matrix; and (c) the
matrix behaves as Newtonian linear-viscous fluid. For simple shear
flow, this model predicts that all ellipsoidal particles rotate
continuously and synthetically to the shear direction. For general
shear neither are all rigid objects free to rotate continuously nor do
all objects rotate synthetically to the shear direction (Fig. 8a)
(Ghosh and Ramberg, 1976; Passchier, 1987a). In this case, the
behaviour of clasts depends on their aspect ratio and initial
orientation as well as on Wp,. Thus, stable orientation analysis for
a population of rigid porphyroclasts in a ductilely deformed rock
can serve as a vorticity gauge (Passchier, 1987a; Masuda et al.,
1995). In the current literature, analyses are commonly per-
formed using two vorticity methods; the porphyroclast aspect ratio
(PAR) method (Passchier, 1987a) and the porphyroclast hyperbolic
distribution (PHD) method (Simpson and De Paor, 1993, 1997). Both
methods and their variants have been applied in numerous studies
(e.g. Wallis et al, 1993; Klepeis et al., 1999; Xypolias and
Koukouvelas, 2001; Bailey and Eyster, 2003; Law et al., 2004;
Jessup et al.,, 2006; Carosi et al.,, 2006; Johnson et al., 2009a;
Langille et al., 2010; Thigpen et al., 2010a,b) for estimating Wy, in
natural ductile shear zones.

The PAR method (Passchier, 1987a) utilizes a population of tailed
porphyroclasts with varying aspect ratios (R = long axis/short axis)
and records graphically their rotational behaviour in the XZ plane
by plotting a sectional clast shape factor, B(=(R*> — 1)/(R*> + 1);
Passchier, 1987a), against the angle, ¢, between the long axis of clast
and the flow plane (Fig. 8b). For high-strain rocks, the flow plane is
considered to be parallel to the straight tails of porphyroclasts;
although most published studies take the trace of macroscopic
foliation as the reference frame. Theoretically, on such graphs two
fields of behaviour for rotated clasts can be distinguished: (a) a field
where the clasts with low shape factor and J-type tails rotate infi-
nitely and hence display a wide range in their long axis orientations;
and (b) a field where the clasts rotate slowly (forward or backward)
forming o-type tails as they approach asymptotically a stable sink
orientation (Fig. 8b). The critical shape factor B. that behaves as
a cut-off point separating these two fields defines the Wiy:

Wm = Bc (13)

Graphs for natural porphyroclast systems, however, often exhibit
a gradual transition rather than an abrupt change between these
two fields (e.g. Jessup et al., 2007). In such cases, the asymptotic
curves, which define the theoretical predicted orientations of clasts
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Fig. 8. Explanation and application of methods that use rigid porphyroclasts to estimate Wp,; the yellow ornament corresponds to g-porphyroclasts and the red to -porphyroclasts
(a) Diagram showing the rotational behaviour of ¢- and é-type porphyroclasts in a sinistral general shear zone (modified after Simpson and De Paor, 1993; De Paor, 1994). (b)
Orientation analysis of a population of tailed clasts using the porphyroclast aspect ratio (PAR) method (after Passchier, 1987a). The equation and its graphical presentation
(asymptotic curves) define the theoretical predicted orientation of clasts at stable sink position at various W, values. (c) Application of PAR method using an alternative and simpler
graphical approach (after Wallis et al., 1993). Notice that all clasts are treated as tailless. (d) Orientation analysis of a population of tailed clasts using the porphyroclast hyperbolic
distribution (PHD) method (after Simpson and De Paor, 1993). Hyperbola with interlimb angle 60° represents tightest hyperbola that separates back- from forward-rotated clasts
(modified after Simpson and De Paor, 1997). (e) Orientation analysis of a population of clasts using the Rigid Grain Net (after Jessup et al., 2007); all clasts are treated as tailless. The
two bold semi-hyperbolas delineate the potential range in Wp,. All plots (b, ¢, d, e) were constructed using the same set of porphyroclast data (from Passchier, 1987a; his fig. 10). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

at stable sink position for various Wy, values (Fig. 8b; Passchier,
1987a), may help to specify the best B. value, but a range of Wy,
values reflecting the uncertainty in evaluating B. should be given.
Wallis et al. (1993) followed an alternative graphical approach that
simplifies the application of PAR method. Accordingly, all por-
phyroclasts are treated as tailless and a critical aspect ratio (R) is
then specified by plotting the angle, ¢, versus the aspect ratio, R, of
porphyroclasts (Fig. 8c). Here, the Wy, can be determined using the
relation (Passchier, 1987a):

Wi = (Rg —1)/(R3+1) (14)

The PHD method also utilizes tailed porphyroclasts, and plots the
aspect ratio (R) and the orientation (¢) of clasts in polar coordinates
using the hyperbolic net (Fig. 8d; Simpson and De Paor, 1993, 1997).
On this graph, backward rotated o-type clasts and all other types of
clasts define two, theoretically distinct, fields that can be separated by
a hyperbola of the net (Fig. 8d). One limb of this hyperbola is selected
to be asymptotic to the mylonitic foliation, assuming that it is
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sub-parallel to the extensional flow apophysis, while the other is
considered to delineate the orientation of the unstable flow apoph-
ysis. Thus, the cosine of the opening angle, «, of the chosen hyperbola
gives the Wy, (Eq. (8); Fig. 8d). Forte and Bailey (2007) emphasized
that the angle, «, can also be obtained from a radial distribution plot
using data from back-rotated clasts only. They investigated the
accuracy of the PHD method and determined that the error inherent
in W, values ranges from 4-0.14 for end-member pure shear to +0.01
for end-member simple shear. Also, Yamaji (2008) proposed that the
PHD method can be simplified by using the gnomonic net as an
alternative means for estimating Wy, and its uncertainty.

Recently, Jessup et al. (2007) compared and unified all above-
described methods (Fig. 8b—d) proposing the Rigid Grain Net (RGN)
as an alternative graphical technique for estimating W, (Fig. 8e). In
fact, the RGN is a modification of the original plot proposed by
Passchier (1987a) and includes a series of semi-hyperbolas that are
also mathematical equivalent to the hyperbolic net. The compar-
ison showed that all methods (including RGN) generally yield
internally consistent W, values independently of whether they use
tailless or tailed porphyroclasts (Fig. 8b—e). However, the PHD
method tends to overestimate slightly the pure shear component.

The application of rigid porphyroclast methods, over the last ten
years, has proved extremely useful for quantifying vorticity of flow
in shear zones, but the accuracy of Wy, estimates is affected by
a number of factors. Several prerequisites must be met (e.g.
Passchier, 1987a). (1) The rigid clasts should be embedded in
a homogeneously deformed and preferentially very fine grained
matrix; although coarse-grained matrix can also behaves as
a continuum (Marques and Burlini, 2008). (2) The shape of clasts
should not change with deformation due to recrystallization or
fracturing and it should closely approach orthorhombic symmetry.
(3) The sample should consist of a population of clasts with a range
of aspect ratios. If the clast population lacks members with large
aspect ratios, the methods will tend to underestimate Wy, (Law
et al., 2004). (4) The strain must be sufficiently large to allow
clasts to reach a stable sink position; otherwise the methods tend to
overestimate Wy, (e.g. Bailey et al., 2004). The presence of well
developed ¢-type clasts is a significant indication that the analysed
rock has experienced sufficient deformation (Ten Brink and
Passchier, 1995). Plots with well defined cut-off points also imply
that clasts have reached their stable orientation (Xypolias and
Kokkalas, 2006). (5) The analysed profile should be orthogonal to
the rotation axis of the porphyroclasts, otherwise the methods will
underestimate Wy,. However, this criterion is difficult to check.
lacopini et al. (2008) investigated this problem examining the
vorticity value variation in sections oblique (5—45°) to the VPP and
showed that a significant underestimation of vorticity values of the
order of 0.15 occurs only when the Wy, is in the range 0.4—0.8. This
error value should be used to correct Wy, in any case. (6) Clasts
should not interact mechanically. (7) All rigid-clast methods are
unreliable if significant strain partitioning at the clast interface
occurs. This prerequisite is because, a clast/matrix interface lubri-
cation markedly influences the stable clast orientations as indicated
by analogue and numerical studies (Ceriani et al., 2003; Mulchrone,
2007; Johnson et al., 2009a,b and reference therein). Recently,
Johnson et al. (2009a,b) modelled the behaviour of lubricated clasts
embedded in a linear-viscous (Newtonian) matrix and showed that
the cut-off point (B. or R.) between permanently rotating and
stable clasts shifts toward smaller values underestimating Wp,.
Notice that clast lubrication compromises the vorticity gauge also
for non-Newtonian rheology but further work is required to eval-
uate the effects of non-linear behaviour (Johnson et al., 2009b). In
practice, a good fit of natural data to the theoretical curves, such as
in Fig. 8b, implies that the rotational behaviour of clasts follows the
linear-viscous model of Jeffery (1922), which assumes coupling

between the clast and the matrix. Consequently, a thorough
comparison between natural and theoretical clast distributions is
required to evaluate whether or not a clast population has enjoyed
lubrication. In this case, a large data set (more than 100 points) with
an appropriate dispersion is needed to make a valid interpretation
(Johnson et al., 2009a).

4.3. Porphyroblasts

The pattern of inclusion trails in porphyroblasts may provide
information about the amount of syntectonic rotation of porphyr-
oblasts, with respect to a reference frame (e.g. shear plane; matrix
foliation) (Schoneveld, 1977; Passchier et al., 1992; Mancktelow and
Visser, 1993; Williams and Jiang, 1999). Based on this observation,
as well as on the analytical work of Ghosh and Ramberg (1976),
various authors have used porphyroblast-rich fabrics to quantify
the vorticity of flow (Vissers, 1987; Wallis, 1995; Beam and Fisher,
1999; lacopini et al., 2008). Assuming steady-state monoclinic
flow, Ghosh (1987) showed, for example, that the amount of rota-
tion of rigid spherical objects (e.g. garnet porphyroblasts)
embedded in a ductile matrix can be combined with independent
strain estimates from the matrix to calculate W,,. Also, Holcombe
and Little (2001) assumed that the internal foliation (S;) of por-
phyroblasts was in the undeformed state parallel to the shear plane
(Fig. 9a), as well as the orientation of S; relative to the external
matrix foliation in the deformed state reflecting true syntectonic
rotation of porphyroblasts (Fig. 9b), and proposed a relatively
simple graphical method for determining Wp,. In this method, the S;
orientation of individual porphyroblasts plots as a function of the
orientation of their long axes and a Wy, value is estimated by
comparing the obtained distribution with graphs that illustrate the
theoretical pattern of distribution curves for a range of different
aspect ratios at constant Wy, and shear strain (vy) values (Fig. 9c).

Methods utilizing rotated porphyroblasts as vorticity gauges do
not require intense deformation of the analysed sample but they
are subject to the other prerequisites for the rigid-clast methods.
Moreover, some authors (e.g. Bell and Johnson, 1989; Bell and
Newman, 2006) argued that spiral-shaped inclusion trails can be
developed from successively overprinting crenulations or trans-
posed foliations without rotation of porphyroblasts with respect to
a fixed kinematic reference frame, and thus put in doubt the
reliability of these methods. However, the validity of this “non-
rotational” model of porphyroblasts development is questioned by
many authors and remains a matter of considerable debate (e.g.
Fay et al,, 2009; Bons et al., 2009; Johnson, 2009 and reference
therein). Passchier and Trouw (2005; p. 218) summarized
a number of criteria for evaluating whether porphyroblasts have
rotated with respect to kinematic axes of bulk flow or not, which
should be considered before using the shape of inclusion trails as
a rotation gauge.

4.4. Quartz c-axis fabrics

Quartz-rich tectonites are often characterized by single- or
crossed-girdle quartz c-axis fabrics, which exhibit asymmetry (or
symmetry) with respect to the trace of foliation in the XZ plane (Law,
1990). The degree of asymmetry (obliquity) of the central girdle
segment of such fabrics is controlled by Wy, and the finite strain
(Platt and Behrmann, 1986), because during any steady-state
deformation with 0 < W, < 1, (1) the maximum principal axis of the
strain ellipsoid rotates toward parallelism with the flow/shear plane
(Az) with increasing strain or remains parallel to it in pure shear (e.g.
Ramsay, 1980; Passchier, 1997), while (2) the central segment of
quartz c-axis fabrics, as indicated by Taylor—Bishop—Hill fabric
modelling (e.g. Lister and Hobbs, 1980) and assumed by many
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Fig. 9. Explanation and schematic illustration of the assumptions in the method used
to estimate Wy, from rotated porphyroblasts (modified after Holcombe and Little,
2001). (a) In the undeformed state, the initial orientation of internal foliation, S;, in
porphyroblasts is parallel to shear plane. (b) In the deformed state, the angular
difference between S; and the external foliation reflects true synkinematic rotation of
porphyroblasts. Notice that all orientations angles (constrained to a 0—180° range) are
measured in the sense of shear with the normal to the shear plane being 0°. (c)
Theoretical predicted plot of the orientation of S; versus the long axis orientation of
individual porphyroblasts with different axial aspect ratios (R = 1, 3, 8) at constant Wi,
(=0.71) and finite strain (Ry, = 3) values. Notice that the intersection of line containing
equant objects (R = 1) with the S;-axis is a function of shear strain (7). In practice, plots
of real data are analysed by comparison with theoretical plots produced by the soft-
ware “GhoshFlow”.

authors (Platt and Behrmann, 1986; Vissers, 1989; Wallis, 1992,
1995), establishes itself orthogonal to the flow plane (Fig. 10a: i).
Based on this observation, Wallis (1992, 1995) showed that Wy, can
be calculated if both the strain ratio Rxz and the angle ( between the
foliation and the perpendicular to the central girdle of a quartz c-axis
diagram are known (Fig. 10a: i). The Rxz data can be incorporated
with @ values either using the Mohr circle for tensor F (Wallis, 1992;
see also Vissers, 1989) or by applying the following analytical
solution:

Wm = cos

1/ 1—Rxz tanzﬁ
tan ! ((1 + Rxz)tan ﬁﬂ (13)

that was recently proposed by the author (Xypolias, 2009) for
simplifying the solution that had originally been derived by Wallis
(1995; his eqs. (8) and (9)). Alternatively, estimates can be obtained
graphically using the diagram of Fig. 10b, which shows the rela-
tionship between Rxz and ( for various Wy, values.

This method (Wallis, 1995), which is known as finite-strain/
quartz c-axis-fabric (Rxz/8) method, has been widely used in studies
of natural shear zones (e.g. Grasemann et al., 1999; Xypolias and
Doutsos, 2000; Law et al, 2004; Sullivan, 2008; Sarkarinejad

et al.,, 2010; Law, 2010; Xypolias et al., 2010). Such studies have
identified potential sources of errors in the calculation of Wi,
Specifically, as illustrated in Fig. 10b, Wy, estimates using Rxz/(
method are very sensitive to small changes in the evaluated angle
@ (Grasemann et al., 1999; Law et al., 2004). Note that in the vast
majority of published quartz c-axis-fabric diagrams, the angle ( is
determined with a minimum error of +£2°, because the central
girdle segment is not perfectly straight (Fig. 10a: i) (e.g. Platt and
Behrmann, 1986) and is commonly not well defined from the
fabric data. Due to this uncertainty in determination of (§, the
method becomes unreliable in high-strain samples (Rxz > 15)
where the ( is less than 5° for a wide range of possible Wy, values
(Fig.10b) (Grasemann et al., 1999). Regarding the error in Wy, values
arising as a consequence of the uncertainty in estimating Rxz, it is
commonly overlapped by the error in Wy, produced by the uncer-
tainty in assigning § (Law, 2010; Xypolias et al., 2010).

Critical to the accuracy of Wy, estimates is the central assump-
tion that the quartz crystal fabrics remain in a stable orientation
with respect to the external kinematic framework (Fig. 10a: i). This
assumption is strongly supported by both experimental (e.g. for ice:
Bouchez and Duval, 1982; for norcamphor: Herwegh and Handy,
1996) and numerical simulation studies (e.g. for quartz:
Etchecopar and Vasseur, 1987; Jessell and Lister, 1990; Takeshita
et al,, 1999) as well as by observations in natural quartz mylonites
(e.g. Burg, 1986; Law et al., 1990; Sullivan and Law, 2007). However,
general shear experiments on quartz have produced fabrics whose
central girdles develop oblique to the shear plane and rotate
synthetically to shear direction with increasing strain and amount
of dynamic recrystallization (e.g. Heilbronner and Tullis, 2006). In
such cases, the Rxz/8 method tends to overestimate Wp, (Law,
2010). These experimental findings seems to be in accordance
with the petrofabric analysis of Law (2010 and references therein)
from quartz mylonites in the Moine thrust zone (NW Scotland)
where kinked single girdle quartz c-axis fabrics are clearly inclined
to the thrust plane. Hence, the central assumption of the method
should not be considered a priori valid for all natural occurring
shear zones and, if possible, it should be independently checked by
other criteria. For example, C-surfaces in C/S fabrics are thought to
develop parallel to the shear zone boundaries (Fig. 10a) (Passchier
and Trouw, 2005 and reference therein).

4.5. Macroscopic foliation

In monoclinic shear zones, the macroscopic foliation typically
defines the XY principal plane of the finite strain ellipsoid. For
volume-constant flow, its angular relationship (angle #; Fig. 10a)
with the shear zone boundary is unique for given Rxz and Wy, values
(e.g. Fossen and Tikoff, 1993; Tikoff and Fossen, 1995). Thus, if § and
Rxz are known, an estimate of Wy, can be obtained (Wells, 2001;
Bailey and Eyster, 2003; Bailey et al., 2004). This simple technique,
usually called the Rxz/f-method, is equivalent to Rxz/# method, and
Wh is determined either using the diagram of Fig. 10b or applying
Eq.(15) for § = f. Bailey et al. (2004) showed that # can also be
assigned from the angular difference between the foliation and C-
shear bands provided that C-surfaces show small variability in their
orientation. These authors have also argued that Rxz/6-method is
valid for isovolumetric non-plane strain deformation and does not
requires the assumption of steady-state deformation.

4.6. Oblique grain-shape foliation

Dynamically recrystallized aggregates of quartz and calcite often
display within foliation-parallel domains of low- to medium-grade
mylonites an oblique grain-shape fabric (Law et al., 1984, 1990; Lister
and Snoke, 1984; Trullenque et al., 2006), which is interpreted to be
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the result of a complex process of continuous nucleation, passive
deformation and rotation of the recrystallized grains (e.g. Means,
1981). According to Wallis (1995), the orientation of the long axes
of quartz neoblasts within an oblique foliation delineates the
direction of the extensional ISA; (Fig. 10a: ii). Supportive evidence
for this assumption is given by experimental studies (Dell’Angelo
and Tullis, 1989; Ree, 1991; Herwegh and Handy, 1998), which
showed that such oblique grain-shape fabrics nucleate with their
long axes in a fixed orientation with respect to the imposed kine-
matic reference frame of progressive deformation. Therefore, the
greatest recorded angle between the oblique foliation and the shear
zone boundaries should theoretically be equal to the angle £
between ISA; and the flow apophysis A; (Fig. 10a: ii; Wallis, 1995). As
a consequence, vorticity estimates can be obtained using the Eq. (9)
(e.g. Daczko et al., 2001). Oblique grain-shape fabrics are instanta-
neous sensitive features and thus such estimates possibly record the
W, at the final increment of ductile deformation rather than Wy,
(Wallis, 1995).

In quartz-rich tectonites, the maximum recorded angle, §,
between the oblique and the main foliation in combination with

the angle, 3, between the shear/flow plane and main foliation
determined from the quartz c-axis fabrics can also be used to assign
¢, if the shear zone boundary is unknown. Thus Eq. (9) can be
rewritten as (Wallis, 1995):

Wh = sin2(6 + 8) (16)

This simple and useful method is commonly referred to as oblique-
grain-shape/quartz c-axis-fabric method or shorter ¢/6-method
(Fig. 10c) (Xypolias and Koukouvelas, 2001; Sullivan, 2008; Frassi
et al., 2009; Law, 2010). Its drawback, however, is that it is based
on two major hypotheses: one regarding the orientation of ISA,
and one regarding the orientation of flow plane. Despite that fact,
W), estimates using 6/8-method are not sensitive to small uncer-
tainties in § values. The uncertainty in assigning ¢ has not been
investigated so far but is not expected to be great. However,
frequency distribution graphs used to determine ¢ often exhibit
continuous populations of orientation data and single outliers with
large values (e.g. Frassi et al., 2009; their fig. 9b; see also Knipe and
Law, 1987; their figs. 1, 2 and 8). In such cases, the angle ¢ may be
assigned from the maximum value of continuous population of
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readings (Frassi et al., 2009; Xypolias et al., 2010). Alternatively,
Johnson et al. (2009a) addressed this problem by applying
a statistical approach for a suite of samples. In this case, an average
W value is obtained by adding an appropriate average correction
for the § angle to measurements of ¢ in each sample.

Experiments in polycrystalline norcamphor by Herwegh and
Handy (1998) have also revealed that the value of angle ¢ is
closely related to the vorticity of flow as well as to the shape of the
strain ellipse just before the end of deformation. Xypolias (2009)
used this finding to show that for a given pair of (Rxz, ¢) values,
the Wy, can be calculated by applying the equation:

Rxz +1
Rxz — 1

Wh = sin(20) (17)
Plot of Rxz versus 6 for various Wy, values (Fig. 10d) indicates that
Whp-curves increase spacing with increasing strain values and
therefore, vorticity estimates from this method (called as Rxz/6 —
method) are relatively insensitive to small changes in values of
input parameters. However, the method is more appropriate for
rocks that record Rxz values greater than ca. 4—5 (Xypolias, 2009).
Moreover, application of both aforementioned methods (4/8,
Rxz[0) as well as of Rxz/# method can also be performed utilizing
the vorticity nomogram illustrated in Fig. 10e. This graph incorpo-
rates all the parameters (4, 8, Rxz) involved in quartz-based vorticity
analysis and allows the investigator to check, for all methods, the
sensitivity of estimated vorticity values to changes of these
parameters. It also provides a rapid means for evaluating the
consistency of vorticity estimates obtained by all three methods.

4.7. Shear bands — flanking structures

C’-type shear bands represent one of the most frequent struc-
tures in general shear zones (Platt and Vissers, 1980; Behrmann,
1987; Grasemann and Stiiwe, 2001) and may serve as another
potential means for estimating vorticity of flow. Yet, the geometric
relationships between shear bands and the elements of flow are not
fully understood. For example, some authors (Bobyarchick, 1986;
Pray et al., 1997) have suggested that shear bands synthetic to the
far-field shearing may nucleate parallel to the inclined flow
apophysis A. Others (Platt and Vissers, 1980; Simpson and De Paor,
1993) have proposed a possible association of shear bands with the
directions of minimum and maximum angular velocities of mate-
rial lines in general flow (27 and Q; in Fig. 5), which implies that
synthetic and antithetic shear bands nucleate parallel to the acute
and obtuse bisector of the flow apophyses, respectively, and
progressively rotate toward the shear/flow plane, A; (Fig. 11).
Convincing supporting evidence for the latter hypothesis was
recently provided by Kurz and Northrup (2008) from natural
mylonitic rocks, who evaluated the angle « between the A; and Ay
using the PHD method and then recognized: (1) that the synthetic
shear bands in the analysed rocks are oriented either parallel to, or
at an angle less than the acute bisector, and (2) that the antithetic
shear bands are poorly-developed and have a mean inclination
parallel to the obtuse bisector of the flow apophyses (Fig. 11). These
findings are in good agreement with the model proposed by Platt
and Vissers (1980) for non-coaxial deformation according to
which the synthetic shear bands rotate very slowly toward the flow
plane remaining active longer than high-angle antithetic shear
bands that rotate rapidly and become inactive. Hence, the largest
recorded angle between the synthetic C’-type shear bands and the
shear plane is equal to half of angle «, and consequently an esti-
mation of Wy, is obtained by using Eq. (8) (Fig. 11) (e.g. Kurz and
Northrup, 2008; Sullivan, 2009).

The rotational behaviour of shear bands during progressive
deformation has also been investigated in the frame of numerical
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Fig. 11. Rose diagram showing orientations of synthetic and antithetic C'-type shear
bands (data after Kurz and Northrup, 2008); n: number of measurements. Twice the
greatest angle (2 x 38°) between the synthetic shear bands and the shear zone
boundary (defined by the mylonitic foliation) is considered to be approximately equal
to the angle between the apophyses A; and A, and hence Wy, = 0.24 (=cos76°; Eq.
(8)).

models for the instantaneous development of flanking structures/
folds (Fig. 12a: 1-10; e.g. Grasemann et al., 2003). Typical synthetic
C'-type shear bands (Fig. 12a: 8—10) are an example group of
flanking structures (see Passchier, 2001; Grasemann and Stiiwe,
2001; Grasemann et al., 2003; Wiesmayr and Grasemann, 2005;
Coelho et al., 2005 for details). Such numerical studies have
shown that normal shear bands with a stable (i.e. non-rotating) and
shallowly inclined orientation (<30°), with respect to the flow
plane, are characteristic of general flows with W; around 0.6—0.8
(e = 40-50°) (Fig. 12a: 9). Normal-sense shear bands can also
develop in all other flow types but in those cases are unstable and,
in some cases, can evolve to other flanking structures. These results
seem to be in accordance with natural observations, which argue
that C’-type shear bands typically form at an angle of 15—35° with
respect to the boundaries of shear zones (e.g. Berthé et al., 1979;
Platt and Vissers, 1980). The model also predicts that conjugate
sets of shear bands are more likely to be observed in pure shear
dominated flows with W, less than 0.6 (Grasemann et al., 2003).
Therefore, these results can be used to determine the possible
range of values of vorticity number in naturally deformed rocks
(e.g. Xypolias et al., 2010).

Nevertheless, this model (Grasemann et al., 2003) does not use
the hypothesis that normal shear bands develop parallel to the
acute bisector of the flow apophyses and progressively rotate
toward the flow plane. The normal shear bands are assumed to
result from back- or forward- or non-rotation of any isolated planar
element that dips less than the inclined apophysis A1 and transects
the foliation at an instant during the progressive mylonitization of
rock. Such a forward- or non-rotation of a gently inclined cross-
cutting element (Fig. 12a: 8a and 9) is in contrast, however, with the
rotational behaviour of passive markers in general flows and may
not be possible in anisotropic rocks (e.g. Kocher and Mancktelow,
2006). From the above discussion, vorticity estimates based on
normal-sense shear bands should be considered with caution.

Grasemann et al. (2003) have also shown that nearly all flanking
structures are unstable and that they can evolve from one type to
another during progressive deformation (Fig. 12a) where stable
normal-sense shear bands are the exception. The type of resultant
structure at the end of deformation depends on the vorticity of flow
and the finite strain as well as the initial orientation of the cross-
cutting element. Realizing this, Gomez-Rivas et al. (2007) proposed
a graphical method for estimating Wy, from a population of flanking
structures embedded in mylonitic rocks assuming that the cross-
cutting elements of structures behave as passive markers in
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Fig. 12. (a) Diagram summarizing the results of numerical models for instantaneous flanking structures (1-10) development as a function of W, and initial orientation, ¢’, of cross-
cutting element in dextral shear zones (after Grasemann et al., 2003; Wiesmayr and Grasemann, 2005). According to the model, natural normal-sense (C’-type) shear bands (9) are
only stable in a general flow with W,, around 0.6—0.8. (b) Geometric parameters and graphs required for applying the flanking structure method of vorticity analysis proposed by
Gomez-Rivas et al. (2007); ¢;: initial orientation of the slip surface with respect to mylonitic foliation; ¢¢: the final orientation of the slip surface; u: maximum drag angle between
the foliation and the slip surface; L: thickness of a deflected foliation-parallel marker layer at the slip surface; and T: thickness of marker layer further away from the slip surface. The
points on the graphs follow the theoretical curves for W, = 1 and initial orientation of 70—80° (data after Gomez-Rivas et al., 2007; their fig. 5).

aviscous medium. The method requires measurements of a number
of simple parameters describing the geometry of individual struc-
tures on planes perpendicular to the foliation and the slip surface
and details of the procedure are summarized in Fig. 12b. The
vorticity is determined by plotting the measurements on a series of
graphs with theoretical curves, which show the expected progres-
sive variation of measured parameters with increasing strain at
constant Wy, and given initial orientation of the cross-cutting
elements. The key assumption of the method is that the analysed
flanking structures nucleate at different stages during progressive
steady-state deformation, but all at approximately the same orien-
tation. Moreover, the slip surface of structures should be sharp and
discrete, and for this reason normal shear bands are not suitable for
this method (Gomez-Rivas et al., 2007).

4.8. Tension gashes and tectonic stylolites

Arrays of tension gashes are common features of brittle—ductile
shear zones (Ramsay, 1980) and their formation is thought to be
controlled by several factors including vorticity (e.g. Smith and
Durney, 1992). It is commonly assumed that tension gashes
nucleate as opening fractures orienting parallel to the shortening
ISA; (Fig. 13). During progressive non-coaxial deformation, the
central portion of the gash vein rotates synthetically to shear

direction as it widens but the fracture will continue to propagate
outward in the direction of ISA;. Also, tension gash veins are
occasionally accompanied by the development of fibres or elongate
grains in vein material. In non-coaxial deformation, new fibre
segments are grown parallel to the extensional ISA, while older
ones are rotating out of this direction (Ramsay and Huber, 1983).
Therefore, if the orientation of fracture tips and/or the orientation
of newly-grown fibres of tension gash veins, with respect to the
shear zone boundary, is known, the vorticity number can be esti-
mated using Eq. (9) (Fig. 13) (Fossen and Tikoff, 1993; Tikoff and
Fossen, 1995). These structures are time sensitive and thus they
provide information for W;. Grasemann et al. (1999) have used
such tension gashes to estimate vorticities related to the later
stages of deformation of the Greater Himalayan Series in the NW
Indian Himalaya that post-date the dominant penetrative defor-
mation associated with mountain building.

Veins formation is largely synchronous with pressure solution
phenomena and therefore the direction of shortening ISA; can be
independently evaluated by stylolites and slickolites since their
teeth are oriented parallel to this direction (Fig. 13) (e.g. Ebner et al.,
2009 and references therein). Ebner and Grasemann (2006)
showed that the angle of obliquity of slickolite teeth may be used
to estimate Wp at the latest deformation increment of a ductile
high-strain zone, if it can be proved that the post-mylonitic
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pressure solution deformation is localized on surfaces parallel to
the mylonitic foliation. In this case, an estimation of A, is also
obtained assuming zero elongation parallel to the flow plane.

4.9. Other vorticity gauges

Several other microstructures can also be used as potential
means for extracting Wy, from rocks. Tikoff and Teyssier (1994)
used the interaction of porphyroclasts as a vorticity gauge and
demonstrated that the proportion of imbicated clasts increases
with increasing finite strain and with increasing pure shear
component. Therefore, if finite strain and number of imbricated
clasts are known, an estimate of Wy, can be obtained. Mulchrone
et al. (2005) modelled the behaviour of tiled phenocrystal pairs in
magmatic flow and showed that the proportion of tiled pairs, which
are consistent with the sense of shear, decrease from 70% for simple
shear to approximately 50% for flows approaching pure shear.
According to this model, the tiling proportion can gives a reliable
Wh value for the magmatic state of an igneous rock only if it is
extracted from a sufficient number (at least 200) of observations.
Giorgis and Tikoff (2004) numerically investigated the rotational
behaviour of a population of oblate porphyroclasts in a viscous
deforming Newtonian medium and showed that data for shape
factor and the degree of anisotropy of the fabric ellipsoids can be
combined to constrain the vorticity of a shear zone.

Experimental and computer simulation studies (e.g. Wenk et al.,
1987) for the evolution of crystallographic preferred orientation of
calcite in the twinning regime have yielded textures with ¢ [0001]-
axis point maximum oblique to the shear plane that rotate anti-
thetically toward the shear direction with increasing simple shear
component. Therefore, the angle of asymmetry of calcite c-axis
fabrics can be used to determine Wy, in calcite marbles (Wenk et al.,
1987; Ratschbacher et al, 1991). However, the validity of this
finding for calcite mylonites is strongly questioned by recent
studies (e.g. Trullenque et al., 2006; Oesterling et al., 2007), which
have demonstrated that c-axis point maximum rotate synthetically
to the sense of shear if dynamic recrystallization during deforma-
tion is dominant compared to twinning.

5. Comparison of methods

Theoretically all of these vorticity gauges could be used to
quantify vorticity of flow in an exhuming shear zone that formed in
the ductile regime and remained active under brittle—ductile to
brittle conditions. In this case, vorticity gauges will record different
parts of the deformation history of the shear zone due to sequential
development of structures at different conditions. Deformed sets of
veins, rigid porphyroclasts/blasts, quartz c-axis fabrics and oblique
grain-shape foliation should provide information for the mylonitic
stage of deformation. C’-type shear bands possibly record the late
syn-mylonitic or the early post-mylonitic deformation, inasmuch as
it seems that they are generated at a late stage of shear zone activity
when the mylonitic foliation is already established (e.g. Passchier
and Trouw, 2005; pp. 128—132). The same is likely the case for
flanking structures, in general. Arrays of tension gashes often occur
early in the history of a brittle—ductile shear zone (Knipe and
White, 1979) or at the end of the ductile deformation history of
an exhuming shear zone (e.g. Grasemann et al., 1999), and therefore
they should mainly describe the post-mylonitic stage.

In such a hypothetical shear zone, the application of all available
vorticity methods will yield similar results only if the flow
remained steady throughout the strain history, and the prerequi-
sites of all the methods are met. Beyond this extreme example,
steadiness of deformation in a ductile shear zone can be tested by
applying individual methods, such as Rxz/# and Rxz/f# methods, in
a suite of differently strained samples. If the deformation in the
shear zone has accumulated by approximately steady-state flow,
the estimates should plot along a specific Wy, curve (e.g. Fig. 10b;
Tikoff and Fossen, 1995). Also, steady-state conditions could be
indicated if the application of all the quartz-based methods (Rxz/(,
Rxz/0 and 6/B) in the same sample yields Wy, estimates that plot to
the same point on the vorticity nomogram (Fig. 10e; Xypolias,
2009).

5.1. The strain memory of methods for a non-steady flow history

Many vorticity studies in naturally occurring shear zones have
shown that deformation is generally non-steady. In such cases, it is
thought that most of the vorticity methods determine the mean
value of flow vorticity, Wy, for the deformation stage of interest
(e.g. mylonitic, post-mylonitic stage) while methods, which are
based on instantaneous sensitive markers such as oblique grain-
shape foliations, tend to record Wy, just before the fossilization of
the fabric. However, the vorticity methods used for determining
W may have different degrees of sensitivity to changes in the flow
regime. This difference implies that some methods likely record
discrete parts of the deformation history, and hence may not
provide meaningful estimates of mean vorticity. In fact, the relative
length of “strain memory” of each method is not well understood,
especially for those analysing the ductile stage of deformation.
Generally, it is thought that deformation of pre-existing veins
accesses a significant part of deformation history since they predate
deformation (Passchier, 1990b). Probably the Rxz/f# and the por-
phyroblasts methods also record a large part of the ductile defor-
mation history inasmuch as they add rotational increments during
the deformation (e.g. Passchier, 1988b). Similar problems exist with
interpretation of the most widely used vorticity methods that
utilize rigid porphyroclasts (e.g. PAR and PHD methods) and quartz
c-axis fabrics (Rxz/# method) (e.g. Law et al., 2004).

Some authors (Simpson and De Paor, 1997; Bailey at al., 2004;
Sullivan, 2008) consider that rotating porphyroclasts are likely to
equilibrate relatively quickly to vorticity changes, and therefore they
do not provide reliable estimates of Wy, because they record the
vorticity at the waning stage of ductile deformation. In contrast,
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other studies (e.g. Xypolias, 2009; Law, 2010) have suggested that
the analysis of rigid porphyroclasts gives results close to the real
mean vorticity of flow. A potential solution to this controversial issue
could be given by comparing vorticity estimates of rigid grain
methods with Wy, or Wy, values obtained by other methods. In the
Hellenides of Greece, for example, Kumerics et al. (2005) reported
vorticity numbers in the range 0.25—0.8 using rigid clasts (PAR
method), which are consistent with Wy, values of 0.15—0.7 obtained
by deformed sets of veins in the same rocks. In the same orogenic
belt, Xypolias (2009) reported vorticity estimates of 0.75—0.85 using
rigid clasts (PAR method) and 0.85—1.00 using the Rxz/6 method in
samples from the same part of a shear zone. Taking into account that
the Rxz/6 method reflects the latest increments of plastic deforma-
tion of quartz, it seems that the results of PAR method remain
unaffected by late-stage changes in the flow regime. A similar
evaluation is made by comparing vorticity results reported by Bailey
and Eyster (2003) from mylonitic rocks in the Pinaleno Mountain
range (Arizona, USA). Here, vorticity analysis of ultramylonites using
rigid clasts (PHD method) has yielded vorticity values of 0.1-0.3,
while analysis of protomylonites using the Rxz/f method has yielded
Wn estimates of 0.6—0.9. Therefore, rigid-clasts analysis records
a pure shear dominated deformation in rocks (ultramylonites) that
began to deform early in the history of the shear zone and appears to
be unaffected by the increasing simple shear component recorded
by the Rxz/§ analysis of rocks (protomylonites) that started to
deform later in the strain history (Bailey and Eyster, 2003). Also, in
the northern Sardinian Variscides, lacopini et al. (2008) obtained
similar vorticity estimates (Wy, = 0.35 4 0.25) from samples ana-
lysed using both the rigid-clast and the porphyroblast methods.
Although these examples do not give a definitive solution to the
problem, they support the view that rigid-clast analysis yields
vorticity estimates close to Wy,.

Questions often arise whether the Rxz/# method, which utilize
data from quartz c-axis fabrics, records a significant part of defor-
mation history providing reliable estimates of Wy, or whether it
reflects only the last increments of ductile deformation. In trying to
find solutions to such problems, many authors (e.g. Sullivan, 2008;
Larson and Godin, 2009; Xypolias, 2009) correlate directly the
length of strain memory of Rxz/8 method with the sensitivity of
quartz c-axis fabrics to respond to temporal changes in flow regime.
But can these two really be interrelated? An answer to this question
can be given if we consider that the central hypothesis of the Rxz/
6 method is valid; the central girdle segment of quartz c-axis fabrics
establishes itself orthogonal to flow/shear plane independently
from the flow type, which has been numerically modelled for plane
strain under strict pure and simple shear conditions by Lister and
Hobbs (1980). So, assuming that the quartz c-axis fabrics are very
sensitive to flow changes, the finite crystallographic pattern will
represent a reliable qualitative indicator of flow regime just prior to
fossilization of the fabric. However, the central segment of such
a fabric will be oriented perpendicular to flow plane as also
occurred at the early increments of deformation. The central
segment of the crystal fabric will retain the same orientation
throughout the deformation history even assuming that the crys-
tallographic fabric pattern equilibrates slowly to vorticity changes,
as is possibly the case. This retention demonstrates that the degree
of re-equilibration of the crystal fabric does not affect the critical
angle 8 between the perpendicular to the central girdle segment of
fabric and the foliation. In other words, the length of strain memory
of the Rxz/# method depends only on the orientation of foliation
and consequently it is similar to that of Rxz/# method. Therefore,
theoretically, both Rxz/6 and Rxz/f# methods should always provide
consistent estimates of Wp,. Currently, only limited data are avail-
able to compare these two methods. Bailey et al. (2007) reported
W, estimates of 0—0.3 using Rxz/# method and 0.2—0.6 using Rxz/6

from a shear zone with the central Appalachian Blue Ridge, which
generally support the above statements since both methods reveal
pure shear dominated deformation.

5.2. Rigid-clasts method versus Rxz/ method

From the above discussion, it follows that both the rigid-clast
and Rxz/# methods probably record a large portion of the ductile
deformation history of a shear zone and consequently they should
provide consistent results or at least significantly overlapping
ranges of Wy, values. But is that really so? Fig. 14 presents results
obtained by various studies that have applied both vorticity
methods to individual samples. The comparison reveals that in
70% of cases (17 out of 24 samples) these two methods give
different estimates of Wy, while in the remaining cases a partial
overlap of estimated values occurs and is considered to be
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Fig. 14. Comparative diagram showing the range of W, values obtained by applying
both rigid porphyroclast and Rxz/8 methods of vorticity analysis to individual samples
(1-24). Length of bars reflects the uncertainty in the calculation of Wy, values. See text
for discussion. Data for samples 1—4 after Law et al. (2004); 5 after Larson and Godin
(2009); 6—11 after Xypolias and Kokkalas (2006); 12—14 after Xypolias et al. (2010);
15—18 after Bailey et al. (2007); 19—24 after Law (2010). Raw data are given as
Supplementary information.
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Fig. 15. Typical vorticity profiles across deformation zones in (a) Cycladic Blueschist belt (after Xypolias et al., 2010), (b) Greater Himalayan Slab in the Annupurna region of the
Central Himalaya (after Larson and Godin, 2009 and references therein), (c) footwall to the South Tibetan detachment system in the Mount Everest area of the eastern Himalaya
(after Law et al., 2004; Jessup et al., 2006) and (d) Raft River Mountains (after Sullivan, 2008). Length of bars reflects the uncertainty in the calculation of Wy, (or W,) values.

comparable. It is remarkable that in half of the samples, the Wy,
values obtained using rigid-clasts method are lower than values
determined by Rxz/# method (Fig. 14). This fact has been exten-
sively discussed by Johnson et al. (2009a,b) who ascribed this
discrepancy to the systematic underestimation of the rigid clast-
based W, estimates due to lubrication that often occurs at the
matrix/clast interface. However, the effect of clast lubrication
seems to be important only for flow with Wy, < 0.9. An equally
plausible explanation could also be that the Rxz/6 method over-
estimates Wy, values if the central girdle segment of the quartz
c-axis fabric rotates synthetically to the shear direction with
progressive shearing (Law, 2010; Section 4.2). Another explanation
discussed by Johnson et al. (2009a) is that if quartz is markedly
weaker than the surrounding matrix, Wy, values obtained by
quartz-based methods could be anomalously high due to parti-
tioning of shear strain and vorticity into quartz pools. Moreover,
the comparison shows that in some samples, which mainly come
from the same shear zone (Blue Ridge province; Bailey et al.,
2007), the rigid-clasts method provides much larger Wy, values
than the Rxz/8 method (Fig. 14). Possibly, the primary cause of this
difference is the relatively low strain in the zone that may lead to
the overestimation of rigid clasts Wy, estimates (Bailey et al,,
2007). Therefore, it seems that a potential discrepancy between
these two vorticity gauges could be due to a number of reasons
such as the analytical problems of methods, the validity of
adopted assumptions and the partitioning of flow at the sample
scale (Law et al., 2004; Johnson et al., 2009a). As pointed out by
Law et al. (2004), at the present state of knowledge, it is very hard
to discriminate between these possibilities.

5.3. Reconstruction of spatial and temporal variation of vorticity

Even with these uncertainties, the application of as many
vorticity methods as possible in a number of individual samples has
proved extremely useful in evaluating the temporal (e.g. Wallis,
1995; Grasemann et al, 1999) and spatial (e.g. Xypolias and
Koukouvelas, 2001; Law et al., 2004) variation of vorticity of flow
within shear zones. Specifically, information about flow path can be
retrieved by comparing estimates determined using methods that

access different parts of the strain history of a shear zone (Passchier,
1988b). For example, Grasemann et al. (1999, 2003) reported Wy,
estimates of ca. 0.9 using quartz c-axis fabrics (Rxz/8 method),
0.6—0.8 using normal-sense shear bands and 0.55—0.7 using rotated
tension gashes from mylonites of the Main Central Thrust zone (NW
Himalaya). These results imply that the deformation history of the
mylonitic zone commenced close to simple shear but progressively
changed to a more pure shear dominated flow toward the last stages
of brittle—ductile deformation (Grasemann et al., 1999) manifesting
a decelerating flow path (Simpson and De Paor, 1993; Fossen and
Tikoff, 1997). In the Sanbagawa belt (SW Japan), Wallis (1992,
1995) reported Wy, values of 0.5—0.7 and 0.35—-0.6 using
deformed sets of veins and the Rxz/8 method, respectively, as well as
W estimates of 0.7—0.8 using the ¢/6 method. These results indicate
an increase in simple shearing during the final increment of ductile
deformation implying an accelerating flow path. In the External
Hellenides (Greece), Xypolias (2009) used vorticity values derived
from rigid clasts and all available quartz-based methods to recon-
struct the spatio-temporal variation of vorticity in a crustal scale
shear zone, and distinguished sequential and zone-parallel domains
that follow either a decelerating or an accelerating flow path.

Possibly in most shear zones the W, varies in both space and
time. Fig. 15 illustrates some indicative vorticity profiles across
deformation zones of various scales. Although, such profiles are not
always easy to interpret in terms of Wy, history they enable us to
discriminate, for instance, pure shear from simple shear dominated
domains. Such information has considerable kinematic conse-
quence since, for example, the increase in pure shear component of
deformation toward the middle of the zone (Fig. 15a and b), espe-
cially when it is accompanied by a decelerating flow path, seems to
be indicative for shear zones of ductile extrusion. Moreover, the
deviation from simple shear along the shear zone boundary
(Fig. 15a,c and d) indicates the presence of a stretching fault (in the
sense of Means, 1989). Vorticity values can also be incorporated
with finite strain data to evaluate the transport-parallel elongation
and/or thinning in a zone (Wallis, 1995; Xypolias and Koukouvelas,
2001; Law et al., 2004; Xypolias et al., 2010; Law, 2010). In such
cases, special attention is needed to avoid propagation of uncer-
tainties involved in vorticity values.
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6. Concluding remarks and perspectives

Quantitative analysis of flow vorticity in rocks can be performed
with a wide range of methods that utilize a variety of geological
structures and fabrics, including deformed sets of veins or dykes,
porphyroclasts/blasts, crystallographic fabrics, oblique grain-shape
fabrics, shear bands, flanking folds and tension gashes. However, all
available methods of vorticity analysis rely on analytical models of
homogeneous steady-state flows and are limited by a number of
additional, but necessary, assumptions which are not always easy
to verify in practice. Therefore, by definition, none of the methods
can be considered as fully reliable although they remain the best
tools we currently have available to extract vorticity numbers from
naturally deformed rocks. Of course, a strict criticism could be that,
at the current stage of method development, it is inappropriate to
attempt to quantify flow vorticities in rocks when the accuracy of
the generated estimates is influenced by numerous complicating
factors, some of which are difficult to assess while others may still
be unknown to us. However, theory and application are inextricably
linked and each benefits from the other. It is for this reason, for
example, that the most widely used vorticity methods, such as
those utilizing rigid porphyroclasts and quartz c-axis fabrics,
appear to have more uncertainties and even pitfalls than other
methods. For these methods, many of the sources of uncertainty/
error have been identified by analyses in naturally deformed rocks.
Moreover, analytical modelling by itself is doomed to perish
without application to real rock deformation.

Obviously, an optimistic approach cannot overcome the uncer-
tainties associated with the different vorticity methods. These
problems can be significantly alleviated by applying as many
methods as possible on a given sample. Agreement between different
methods that record approximately the same part of deformation
history of a shear zone provides evidence that the vorticity estimates
are not merely artefacts of the assumptions underlying each method.
The application of a number of methods with the same or different
strain memory seems to be also an effective and promising way for
evaluating the temporal and spatial variation of vorticity within
naturally occurring shear zones. Some attempts have been made in
this direction, especially in the last ten years, but much further work
is required. A challenge for future work is to investigate whether
shear zones in different tectonic regimes have different “vorticity
signatures” in terms of spatio-temporal variation.

Thus, we now need more high quality vorticity studies in shear
zones of various scales and tectonic environments. It is my belief
that such studies will be able to provide robust data on critical
topics such as the likely sources of errors of vorticity estimates, the
strain memory of different methods, the descriptive power of
methods for identifying triclinic flows, and the flow path in shear
zones. Such data will provide valuable inputs for future analytical,
numerical and experimental studies and that will, in turn, improve
the existing methods and help to develop new ones, which mini-
mize assumptions. Moreover, future work should be focussed on
error and sensitivity analysis, which are currently limited in the
literature. Until then, vorticity estimates obtained by the existing
available methods should be used with caution.
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